Speed is the new normal

By Dr Brian Russell

If you’re building a product in 2026 and your plan still assumes “we’ll ship in
December,” you’re already behind. Not because everyone suddenly became
smarter. Because expertise is being commoditised and this shifts implementation
paradigms. An expert engineer with deep domain knowledge may now be slower
than a junior builder with strong Al tooling and an obsession with shipping. Even
more interesting: domain experts who can now “vibe code” are in a new position
entirely. They don’t need to spend months translating reality into requirements for
someone else to interpret. They can build the artifact directly, watch users interact
with it, and iterate in tight loops.

This isn’t only about software products. It’s about the whole business surface area:

« the website and landing pages

« lead magnets, onboarding flows, email sequences

o sales collateral, demos, investor updates

« internal tools, dashboards, and reporting

« automations across CRM, support, billing, and operations

The companies that win are increasingly the ones that can ship the business as
fast as they ship the code.

Deep computational algorithms that used to take weeks of learning and
implementation can now be coded in minutes, refined in hours, and tested the same



day. Not always perfectly. Not always elegantly. But fast enough to create a
feedback loop that drives the next build.

And that’s the point.

The cost and friction to build, ship, and sell has collapsed for a certain class of
products —especially products that can reach users directly, collect continuous
feedback, and scale with software instead of headcount. If you’re still running 2024
playbooks for one of these products, you’ll lose to teams that aren’t.

The thesis
In 2026, speed is not a nice-to-have. It’s a strategy.

Speed doesn’t mean rushing. It means designing your product, team, and economics
SO you can learn faster than competitors and turn learning into shipped artifacts—
software, content, workflows, and sales assets. The winner is often not the team with
the best initial idea. It’s the team with the fastest learning loop that compounds into a
better product and a sharper go-to-market.

Why this is happening
A lot of what used to be “the work” has turned into commaodity output.

Scaffolding, glue code, setup, wiring, boilerplate Ul, database wrappers, deployment
scripts, testing harnesses—these were the invisible tax that slowed everyone down.
The same is now true for business outputs: first-pass landing page copy, pricing
pages, FAQs, sales decks, demo scripts, nurture sequences, even basic customer
support playbooks. Tools can create decent first drafts quickly, which means humans
can spend more time on the high-leverage parts: choosing the problem, defining the
user, shaping the workflow, designing the experience, deciding what to measure,
interpreting the signal.

That changes who wins.

A traditional team might spend months polishing a spec, aligning stakeholders,
writing tickets, and sequencing sprints. Meanwhile a smaller, Al-augmented team
builds something imperfect but real, ships it, and starts collecting data. They don’t
win because they’re “pbetter at coding.” They win because they’re better at
discovering truth while the slower team is still debating what truth might be.

The uncomfortable truth

If you could have shipped faster, and you chose not to, the market will punish you for
it. Not emotionally. Not morally. Just mechanically.

Because the teams shipping faster are learning faster, and learning is the
compounding advantage.



The 4-speed framework

When | look at teams that move fast and stay sane, they usually win on four
dimensions. Miss one and you can still ship quickly for a while, but you’ll struggle to
turn speed into a business.

1) Product speed: ship to learn
Your first job isn’t to be right. It’s to get the feedback loop running.

Requirements are no longer something you “finish.” They’re something you
discover—by putting a real artifact in front of real users. That includes software, but it
also includes marketing and business artifacts: a landing page that forces you to
explain the value, a pricing page that forces you to pick a business model, an
onboarding flow that forces you to decide what “success” means for a new user.

A practical test: can you get a real user interaction within two weeks? Not a demo to
your friends. Not internal “we think it’s cool.” A real user doing a real workflow,
clicking a real page, replying to a real offer, or paying for something.

If you can’t, you don’t necessarily have a bad product. But you do have a speed
problem. And speed problems compound.

2) Team speed: the builder/PM merge

Developers and product managers are converging. Marketers and product are
converging too.

Modern teams need deep product thinking and full-stack execution. The good news
is that many mechanical parts can be augmented by Al: not just code, but copy,
designs, scripts, analytics instrumentation, and internal automation. “Al-native”
doesn’t mean replacing people. It means treating tools like Claude/Codex-style
assistants as force multipliers, so a small team behaves like a much larger one.

If you can spend a few hundred dollars a month on tools that make you meaningfully
faster, that’s often cheaper than hiring early—especially before you’ve found
product—-market fit. Hiring is a long-term bet. Tools are a short-cycle multiplier.

A cultural shift follows: the fastest teams are increasingly the ones where domain
experts can build directly, not just specify. The moment you remove the translation
layer between “knowing the problem” and “building the artifact,” speed and quality
both improve.

3) Go-to-market speed: design for shorter paths to revenue
Enterprise sales cycles aren’t magically shrinking. Many B2B motions still look like

12—-18 months, with procurement, security reviews, stakeholder alignment, and
budget approvals.



So ask a hard question early: can the product start as B2C (or prosumer) and later
expand into B2B? Call it B2C2B if you like. The label doesn’t matter. The mechanics
do.

That shift changes everything. You can market while you build. You can iterate
pricing early. You can earn revenue before procurement. You can build your brand
and distribution while the product is still forming. You can let individuals pull it into
organizations once it’s already proving value.

This doesn’t remove governance. But it can drastically change the pace of learning
and adoption.

4) Economic speed: token costs, pricing, and the “free” trap
Al changes unit economics in a way many teams underestimate.
Two things matter immediately.

First, token costs are cost of goods sold (COGS). If each workflow costs you money
to run, you need to know what it costs, where it spikes, and how it scales with usage.
This applies not only to the product, but also to business tooling: customer support
automation, prospecting workflows, content generation, reporting pipelines.

Second, free can be either a growth engine or a cash leak. Freemium is not a
philosophy. It’s a design choice. If the product’s value is high but costs are variable,
you need pricing that can breathe with usage. Limits, tiers, credits, or pay-per-use
mechanics become part of product design.

Speed isn’t just shipping fast. It’s shipping fast without creating a business you can’t
afford to run.

What’s different from 2024

The breadth of what’s possible has exploded. Al tools are now good enough to be
used in production. Platforms for building and shipping web and app products have
reduced the level of expertise needed to get something live. If you have domain
expertise and a product idea, you can ship quickly.

Someone can take a day, learn a modern deployment path, and ship something real.
Tools like Replit (and similar platforms) can make prototyping almost unfairly fast—
not just for product code, but for marketing pages, signup flows, onboarding, and
internal dashboards.

But there’s a trade. Fast platforms accelerate early speed. Their leverage fades as
complexity grows.



So the move is: use fast defaults to get learning velocity—then deliberately invest in
architecture when the product starts proving itself. Prototype quickly, then migrate to
a production-grade stack when the signal is real.

Examples, so this isn’t abstract

A lot of speed wins don’t come from a magical feature. They come from designing
the system so distribution and feedback are built in.

A “viral loop” product intentionally creates sharable outputs: branded reports,
dashboards, collaboration artifacts, or before/after results that people naturally
forward. Now your users are doing marketing while you’re doing product.

A B2B product with a B2C entry gives an individual a clear win—time saved, clarity
gained, a reusable asset created—and lets that person pull it into the organization.
That changes the sales motion because you arrive at governance with evidence, not
theory.

What I'd do this week
If you want speed in 2026, don’t start with a roadmap. Start with constraints.

Pick one problem you need solved and prototype it fast. Build the smallest workflow
that produces a user-visible outcome. Put a hard ceiling on MVP scope. Instrument
the product so you can see what users do, where they stop, and what they ask for.
Then apply the same approach to the business wrappers: landing page, pricing,
onboarding, and the first sales motion.

A few practical defaults:

« Prototype one workflow end-to-end, not ten half-workflows.

« Ship a simple website that makes the value legible, not “perfect branding
later.”

« Build sharing/collaboration/report outputs early if virality matters.

o Track token costs per key action and decide what to cache, limit, or price.

« Build feedback into the product and the business: “request feature,” “report
issue,” plus lightweight admin analytics.

o Treat deployment as part of development. If it’s not live, it’s not real.

And ask a better question than “Can we ship by December?”

Ask: “How do we ship an MVP by March?”

Not because March is magic, but because a short deadline forces you to build what
matters and drop what doesn't.

Caution: it’s still business

Speed changes what'’s possible, but it doesn’t repeal reality.



You still need customers. You still need trust. Human relationships still move at
human speeds. Procurement still takes time. Some domains still have long validation
cycles. Coordinating and planning with a team still requires communication,
alignment, and judgment.

Some parts of the business can be 10x faster now. But the market will still teach you
the same lessons it always has. The difference is you can reach those lessons
earlier, and adapt before the window closes.

Final thought

If you’re not going fast enough, you will lose to lesser products with faster iteration,
because they will learn earlier and adapt sooner. Speed is not a vanity metric. It’s a
learning advantage that turns into product advantage and then into market
advantage.

Build virality into the product if you can. Build market feedback into the product even
if you think you don’t need it. And treat shipping as the normal state of the
company—software, website, marketing assets, and internal tools all moving
together.

If you’re building an Al-enabled product and want a fast sanity check on interaction
design, unit economics, and how to ship without losing trust, email me:



